

 ASN Filter Designer
FilterScript user's guide

February 2018

ASN17-DOC002, Rev. 2

For public release

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 2
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

Legal notices

All material presented in this document is protected by copyright under international copyright laws. Unless otherwise
stated in this paragraph, no portion of this document may be distributed, stored in a retrieval system, or reproduced
by any means, in any form without Advanced Solutions Nederland B.V. prior written consent, with the following
exception: any person is hereby authorized to store documentation on a single computer for personal use only and to
print copies for personal use provided that the documentation contains Advanced Solutions Nederland B.V. copyright
notice.

No licenses, expressed or implied are granted with respect to any of the technology described in this document.
Advanced Solutions Nederland B.V. retains all intellectual property rights (IPR) associated with the technology
described within this document.

The information presented in this document is given in good faith and although every effort has been made to ensure
that it is accurate, Advanced Solutions Nederland B.V. accepts no liability for any typographical errors.

In no event will Advanced Solutions Nederland B.V. be liable for any damages resulting from any defects or
inaccuracies in this document, even if advised that such damages may occur.

Advanced Solutions Nederland B.V.

www.advsolned.com

support@advsolned.com

Copyright © 2018 Advanced Solutions Nederland B.V. All rights reserved.

Technical documentation feedback

If you would like to make a suggestion or report an error in our documentation, please feel free to contact us. You are

kindly requested to provide as much information as possible, including a full description of the error or suggestion,

the page number and the document number/description. All suggestions or errors may be sent to:

documentation@advsolned.com

file:///C:/Advanced%20Solutions%20Nederland/Documents/2011/www.advsolned.com
file:///C:/Advanced%20Solutions%20Nederland/Documents/2011/support@advsolned.com
file:///C:/Advanced%20Solutions%20Nederland/Documents/2011/documentation@advsolned.com

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 3
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

Summary

This user's guide is intended to provide users of the ASN Filter Designer with a concise overview of the symbolic

math scripting language IDE.

The symbolic filter script session may be started from the main toolbar by

or selecting ASN FilterScript in the options menu in the P-Z

editor.

The scripting language supports over 65 scientific commands and

provides designers with a familiar and powerful programming language, while at the same time allowing them to

implement complex symbolic mathematical expressions for their filtering applications. The scripting language offers

the unique and powerful ability to modify parameters on the fly with the so called interface variables, allowing for real-

time updates of the resulting frequency response. This has the advantage of allowing the designer to see how the

coefficients of the symbolic transfer function expression affect the frequency response and the filter's time domain

dynamic performance.

Video tutorial to get you started

ASN Filter script in a nutshell

https://www.youtube.com/watch?v=CUC0KxegbU0

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 4
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

1. Filter script IDE

The filter script IDE (integrated development environment) provides you with all of the necessary features in order to

design and evaluate your symbolic filter concept. The IDE output is coupled to the filter designer GUI, providing a fully

interactive method of customising your filter transfer function on the fly.

As seen, the IDE is split up into a code editor and an output window. The IDE differs from other scripting IDEs in that

all executed code appears in the output window, and there is no provision for entering and evaluating expressions in

the output window directly.

As with all standard code editors, right clicking in the editor produces a standard options menu for copying,

pasting, cutting and adding/removing comments respectively.

An IntelliSense is provided in order to help with the syntax of commands.

code editor

output

compile and run stop interface variables

https://en.wikipedia.org/wiki/Intelligent_code_completion

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 5
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

1.1. Code structure

The primary purpose of the symbolic filter script is to obtain values for the following three inputs:

 Num: the numerator coefficients

 Den: the denominator coefficients

 Gain: the filter gain

In order to provide a flexible means of modifying parameters on the fly (see section 1.2), the code is spilt up into two

sections:

 Initialisation: contains all definitions of interface variables and any constant expressions. This section is run

only once after compilation.

 Main: contains the bulk of the code, including the Num, Den and Gain expressions. Any expressions

containing interface variables will be updated when modified via the interface variable GUI (see section 1.2.1).

The basic code structure is summarised below:

The ClearH1 expression allows you to remove the H1 filter (primary) from the filter cascade and just use the H2

(secondary) filter. The relationship of the H1 and H2 filters is shown below:

As seen, the main FIR/IIR filter designed via the filter designer GUI is assigned to the primary filter, H1. All poles and

zeros defined via the filter script are added to a secondary filter block, H2. The H2 filter block implements the filter as

a single section (i.e. no biquads) IIR, which eases the implementation, but also the advantage of assigning poles to

an FIR primary filter. In the case of no poles, the H2 filter becomes an FIR filter.

It should be noted that a direct form (single section) implementation may become problematic (due to

numerical stability issues) for higher IIR filter orders, especially when poles are near to the unit circle.

The Heq (all-pass filter) and H3 (post filter) filters must be disabled via the main UI if they are not required.

ClearH1;

interface variables
constant expressions

Main()

{

 Num = {};

 Den = {};

 Gain = 1;

}

H1 H2

FIR/IIR filter designed via the
filter designer

Filter script filter

Frequency
response

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 6
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

1.2. Interface variables

Central to the interactivity of the tool are the so called interface variables. An interface variable is simply stated: a

scalar input variable that can be used modify a symbolic expression without having to re-compile the code.

As discussed in section 1.1, interface variables must be defined in the initialisation section of the code, and may

contain constants (such as, fs and pi - see section 2.10 for the complete list) and simple mathematical operators,

such as multiply * and / divide. Where, adding functions to an interface variable is not supported.

An interface variable is defined as vector expression:

interface name = {minimum, maximum, step_size, default_value};

where, all entries must be real scalars values. Vectors and complex values will not compile.

Examples

interface alpha = {-1,1,0.1,0.3};

sets the variable alpha to 0.3, and bounds the range
to ±1, in steps of 0.1.

interface fc = {-fs/2,fs/2,1,fs/10};

sets the variable fc to fs/10, and bounds the range to
±fs/2, in steps of 1.

1.2.1. User interface

All interface variables are modified via the interface variable GUI, by clicking on

As seen, a list of valid interface variables is presented together with their current values. Where, the list is

automatically updated at compilation time in order to ensure that it matches the user code.

double-click to edit value

modify selected variable
value by adjusting slider

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 7
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2. The Scripting language

The scripting language supports over 65 scientific commands and provides designers with a familiar and powerful

programming language for designing filters with the most demanding specifications.

2.1. Trigonometrical functions

2.2. Vector functions

Function Syntax Description

angle y = angle(x) Compute the inverse tangent (four quadrant)

cos y = cos(x) Compute the cosine

cosh y = cosh(x) Compute the hyperbolic cosine

sin y = sin(x) Compute the sine

sinh y = sinh(x) Compute the hyperbolic sine

tan y = tan(x) Compute the tangent

tanh y = tanh(x) Compute the hyperbolic tangent

Function Syntax Description
cols y = cols(x) Gets number of columns in the vector x
conv y = conv(a,b) Computes the linear convolution of input vectors a and b.

Where, the length of y is equal to length(a) +
length(b)-1

diff y = diff(x) Gets the difference between adjacent values of the vector x

eldef A(3,0) = eldef(5) Sets the vector element value to the given value
length y = length(x) Gets the vector length
max y = max(x) Gets the maximum of the vector x
mean y = mean(x) Gets the mean of the vector x

min y = min(x) Gets the minimum of the vector x

ones y = ones(N) Vector of 1s of length N

poly y = poly(x) Convert roots to polynomial
reverse y = reverse(x) Flip vector elements up-to-down
roots y = roots(x) Get the roots of polynomial x

rows y = rows(x) Gets the number of rows in vector x

series y = series(min,step,max) Creates a data series - see section 2.5
sortup y = sortup(x) Sort vector in ascending order: smallest first, largest last
sortdown y = sortdown(x) Sort vector in descending order: largest first, smallest last
stddev y = stddev(x) Gets the standard deviation of x

sum y = sum(x) Gets the sum of vector x
transpose y = transpose(x) Transpose vector x

zeros y = zeros(N) Vector of 0s of length N

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 8
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.3. General functions

Function Syntax Description

abs y = abs(x) Compute the absolute value(s).

ceil y = ceil(x) Round up to infinity.

conj y = conj(x) Compute the complex conjugate.

exp y = exp(x) Compute the exponential of the argument, i.e. ey.

pow2 y = pow2(x) Compute the element to the power of 2, i.e 2y

pow10 y = pow10(x) Compute the element to the power of 10, i.e 10y

flip y = flip(x) Flip the real and imaginary components of x

floor y = floor(x) Round down to -∞

imag y = imag(x) Get the imaginary component of x

ln y = ln(x) Natural log

log10 y = log10(x) Log base 10

log2 y = log2(x) Log base 2

logn y = logn(N,x) Log of x to base N

newpz y = newpz(mag,freq)

Define a root: 0 ≤ 𝑚𝑎𝑔 ≤ 5 and 0 ≤ 𝑓𝑟𝑒𝑞 ≤ ±𝑓𝑠/2

 𝑟𝑜𝑜𝑡𝑠 = { (𝑧 − 𝑟1𝑒
−𝑖𝜃1), (𝑧 − 𝑟2𝑒

−𝑖𝜃2), … }

Where, 𝜃𝑥 =
2𝜋𝑓

𝑓𝑠

real y = real(x) Get the real component of x

round y = round(x) Round x

sqr y = sqr(x) Square of x

sqrt y = sqrt(x) Square root of x

2.4. Math operators

Operator Example syntax Description

+ a+b Addition.

- a-b Subtraction.

* A*B Multiplication.

/ A/B Division.

.* A.*B Element-by-element vector multiplication.

./ A./B Element-by-element vector division.

.^ a.^N Element-by-element vector to the power.

^ a^N Vector to the power.

! N! Factorial.

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 9
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.5. IIR filter design

A summary of all classic IIR filter design methods that are supported is given in this section.

2.5.1. ellip

Syntax
Hd = ellip (Order, Frequencies, Rp, Rs, Type, DFormat)

Description

Classic IIR Elliptic filter design.

 Equiripple in both the passband and stopband.

 Fastest roll-off.

 Lowest order filter of all supported prototypes.

Rp (Passband ripple in dB)

Rs (Stopband attenuation in dB)

Transition band (lower and upper
cut-off frequency).

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 10
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

Hd = ellip (Order, Frequencies, Rp, Rs, Type, DFormat)

Order: may be specified up to 20 (professional) and up to 10 (educational) edition. Setting the Order to 0, enables

the automatic order determination algorithm.

Frequencies: lowpass and highpass filters have one transition band, and in as such require two frequencies (i.e.

lower and upper cut-off frequencies of the transition band). For bandpass and bandstop filters, four frequencies are

required (i.e. two transition bands). All frequencies must be ascending in order and < Nyquist (see the example below).

Rp: Passband ripple in dB.

Rs: Stopband attenuation in dB.

Type: The elliptic method facilitates the design of lowpass, highpass, bandpass and bandstop filters

respectively.

Hd: the elliptic method designs an IIR Elliptic filter based on the entered specifications and places the transfer function

(i.e. numerator, denominator, gain) into a digital filter object, Hd. The digital filter object can then be combined with

other methods if so required. For a digital filter object, Hd, calling getnum(Hd), getden(Hd) and getgain(Hd)

will extract the numerator, denominator and gain coefficients respectively – see below.

DFormat: allows you to specify the display format of resulting digital filter object.

symbolic Display a symbolic representation of the filter object. If the order > 10, the

symbolic display option will be overridden and set to numeric.
numeric Display a matrix representation of the filter object.
void Create a filter object, but do not display output.

Examples

ClearH1; // clear primary filter from cascade

ShowH2DesignMarkers; // show DM on chart

Main()

Rp=1;

Rs=80;

F={50,120};

Hd=ellip(0,F,Rp,Rs,"lowpass","symbolic");

F={50,80,100,120};

Hd=ellip(0,F,Rp,Rs,"bandpass","symbolic");

Num = getnum(Hd); // define numerator coefficients

Den = getden(Hd); // define denominator coefficients

Gain = getgain(Hd); // define gain

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 11
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.5.2. butter

Syntax
Hd = butter (Order, Frequencies, Rp, Rs, Type, DFormat)

Description

Classic IIR Butterworth filter design.

 Smooth monotonic response (no ripple).

 Slowest roll-off for equivalent order.

 Highest order of all supported prototypes.

Rp (Passband ripple in dB)

Rs (Stopband attenuation in dB)

Transition band (lower and upper
cut-off frequency).

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 12
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

Hd = butter (Order, Frequencies, Rp, Rs, Type, DFormat)

Order: may be specified up to 20 (professional) and up to 10 (educational) edition. Setting the Order to 0, enables

the automatic order determination algorithm.

Frequencies: lowpass and highpass filters have one transition band, and in as such require two frequencies (i.e.

lower and upper cut-off frequencies of the transition band). For bandpass and bandstop filters, four frequencies are

required (i.e. two transition bands). All frequencies must be ascending in order and < Nyquist (see the example below).

Rp: Passband ripple in dB. This is somewhat of a misnomer, as the Butterworth filter has a maximally flat passband.

A good default value is 0.001dB, but increasing this value will affect the position of the filter’s lower cut-off frequency.

Rs: Stopband attenuation in dB. This is somewhat of a misnomer, as the Butterworth filter has a maximally flat

stopband, which means that the stopband attenuation (assuming the correct filter order is specified) will be ≥

stopband specification.

Type: The Butterworth method facilitates the design of lowpass, highpass, bandpass and bandstop filters

respectively.

Hd: the Butterworth method designs an IIR Butterworth filter based on the entered specifications and places the

transfer function (i.e. numerator, denominator, gain) into a digital filter object, Hd. The digital filter object can then be

combined with other methods if so required. For a digital filter object, Hd, calling getnum(Hd), getden(Hd) and

getgain(Hd) will extract the numerator, denominator and gain coefficients respectively – see below.

DFormat: allows you to specify the display format of resulting digital filter object.

symbolic Display a symbolic representation of the filter object. If the order > 10, the

symbolic display option will be overridden and set to numeric.
numeric Display a matrix representation of the filter object.
void Create a filter object, but do not display output.

Examples

ClearH1; // clear primary filter from cascade

ShowH2DesignMarkers; // show DM on chart

Main()

Rp=0.001;

Rs=80;

F={50,120};

Hd=butter(0,F,Rp,Rs,"lowpass","symbolic");

F={50,80,100,120};

Hd=butter(0,F,Rp,Rs,"bandpass","symbolic");

Num = getnum(Hd); // define numerator coefficients

Den = getden(Hd); // define denominator coefficients

Gain = getgain(Hd); // define gain

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 13
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.5.3. cheby1

Syntax
Hd = cheby1 (Order, Frequencies, Rp, Rs, Type, DFormat)

Description

Classic IIR Chebyshev Type I filter design.

 Maximally flat stopband.

 Faster roll off (passband to stopband transition) than Butterworth.

Rp (Passband ripple in dB)

Rs (Stopband attenuation in dB)

Transition band (lower and upper
cut-off frequency).

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 14
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

Hd = cheby1 (Order, Frequencies, Rp, Rs, Type, DFormat)

Order: may be specified up to 20 (professional) and up to 10 (educational) edition. Setting the Order to 0, enables

the automatic order determination algorithm.

Frequencies: lowpass and highpass filters have one transition band, and in as such require two frequencies (i.e.

lower and upper cut-off frequencies of the transition band). For bandpass and bandstop filters, four frequencies are

required (i.e. two transition bands). All frequencies must be ascending in order and < Nyquist (see the example below).

Rp: Passband ripple in dB.

Rs: Stopband attenuation in dB. This is somewhat of a misnomer, as the Chebyshev Type I filter has a maximally flat

stopband, which means that the stopband attenuation (assuming the correct filter order is specified) will be ≥

stopband specification.

Type: The Chebyshev Type I method facilitates the design of lowpass, highpass, bandpass and bandstop filters

respectively.

Hd: the Chebyshev Type I method designs an IIR Chebyshev Type I filter based on the entered specifications and

places the transfer function (i.e. numerator, denominator, gain) into a digital filter object, Hd. The digital filter object

can then be combined with other methods if so required. For a digital filter object, Hd, calling getnum(Hd),

getden(Hd) and getgain(Hd) will extract the numerator, denominator and gain coefficients respectively – see

below.

DFormat: allows you to specify the display format of resulting digital filter object.

symbolic Display a symbolic representation of the filter object. If the order > 10, the

symbolic display option will be overridden and set to numeric.
numeric Display a matrix representation of the filter object.
void Create a filter object, but do not display output.

Examples

ClearH1; // clear primary filter from cascade

ShowH2DesignMarkers; // show DM on chart

Main()

Rp=1.4;

Rs=80;

F={50,120};

Hd=cheby1(0,F,Rp,Rs,"lowpass","symbolic");

F={50,80,100,120};

Hd=cheby1(0,F,Rp,Rs,"bandpass","symbolic");

Num = getnum(Hd); // define numerator coefficients

Den = getden(Hd); // define denominator coefficients

Gain = getgain(Hd); // define gain

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 15
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.5.4. cheby2

Syntax
Hd = cheby2 (Order, Frequencies, Rp, Rs, Type, DFormat)

Description

Classic IIR Chebyshev Type II filter design.

 Maximally flat passband.

 Slower roll off (passband to stopband transition) than Chebyshev Type I.

Rp (Passband ripple in dB)

Rs (Stopband attenuation in dB)

Transition band (lower and upper
cut-off frequency).

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 16
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

Hd = cheby2 (Order, Frequencies, Rp, Rs, Type, DFormat)

Order: may be specified up to 20 (professional) and up to 10 (educational) edition. Setting the Order to 0, enables

the automatic order determination algorithm.

Frequencies: lowpass and highpass filters have one transition band, and in as such require two frequencies (i.e.

lower and upper cut-off frequencies of the transition band). For bandpass and bandstop filters, four frequencies are

required (i.e. two transition bands). All frequencies must be ascending in order and < Nyquist (see the example below).

Rp: Passband ripple in dB. This is somewhat of a misnomer, as the Chebyshev Type II filter has a maximally flat

passband. A good default value is 0.001dB, but increasing this value will affect the position of the filter’s lower cut-

off frequency.

Rs: Stopband attenuation in dB.

Type: The Chebyshev Type II method facilitates the design of lowpass, highpass, bandpass and bandstop

filters respectively.

Hd: the cheby2 method designs an IIR Chebyshev Type II filter based on the entered specifications and places the

transfer function (i.e. numerator, denominator, gain) into a digital filter object, Hd. The digital filter object can then be

combined with other methods if so required. For a digital filter object, Hd, calling getnum(Hd), getden(Hd) and

getgain(Hd) will extract the numerator, denominator and gain coefficients respectively – see below.

DFormat: allows you to specify the display format of resulting digital filter object.

symbolic Display a symbolic representation of the filter object. If the order > 10, the

symbolic display option will be overridden and set to numeric.
numeric Display a matrix representation of the filter object.
void Create a filter object, but do not display output.

Examples

bessel

ClearH1; // clear primary filter from cascade

ShowH2DesignMarkers; // show DM on chart

Main()

Rp=1;

Rs=80;

F={50,120};

Hd=cheby2(0,F,Rp,Rs,"lowpass","symbolic");

F={50,80,100,120};

Hd=cheby2(0,F,Rp,Rs,"bandpass","symbolic");

Num = getnum(Hd); // define numerator coefficients

Den = getden(Hd); // define denominator coefficients

Gain = getgain(Hd); // define gain

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 17
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.5.5. bessel

Syntax
Hd = bessel (Order, Frequencies, Type, DFormat)

Description

IIR Bessel filter design. Analog Bessel filters have a constant group delay in the passband, which is very desirable for

a variety of measurement applications. The method implemented within FilterScript uses the Bilinear transform which

modifies the standard analog Bessel characteristic, and as a consequence it does not preserve the constant group

delay characteristic in the passband. You may equalise the group delay by using an all-pass filter, either in FilterScript

or in the main tool with the all-pass filter designer.

 Near constant group delay in the passband.

 Slower roll-off than other prototypes.

Non-linear
group delay

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 18
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

Cascading a single all-pass filter (designed with the all-pass filter designer) with the Bessel filter, linearizes the

group delay in the passband – see below.

linear group
delay

All-pass design
marker

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 19
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

Hd = bessel (Order, Frequencies, Type, DFormat)

Order: may be specified up to 20 (professional) and up to 10 (educational) edition.

Frequencies: lowpass and highpass are specified via one cut-off frequency, whereas bandpass and bandstop filters

require two frequencies (i.e. lower and upper cut-off). All frequencies must be ascending in order and < Nyquist (see

the example below).

Type: The Bessel method facilitates the design of lowpass, highpass, bandpass and bandstop filters

respectively.

Hd: the Bessel method designs an IIR Bessel filter based on the entered specifications and places the transfer function

(i.e. numerator, denominator, gain) into a digital filter object, Hd. The digital filter object can then be combined with

other methods if so required. For a digital filter object, Hd, calling getnum(Hd), getden(Hd) and getgain(Hd)

will extract the numerator, denominator and gain coefficients respectively – see below.

DFormat: allows you to specify the display format of resulting digital filter object.

symbolic Display a symbolic representation of the filter object. If the order > 10, the

symbolic display option will be overridden and set to numeric.
numeric Display a matrix representation of the filter object.
void Create a filter object, but do not display output.

Examples

ClearH1; // clear primary filter from cascade

ShowH2DesignMarkers; // show DM on chart

Main()

F={75};

Order=5;

Hd=bessel(Order,F,"lowpass","symbolic");

F={50,100};

Hd=bessel(Order,F,"bandpass","symbolic");

Num = getnum(Hd); // define numerator coefficients

Den = getden(Hd); // define denominator coefficients

Gain = getgain(Hd); // define gain

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 20
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.5.6. notch

Syntax
Hd = notch (Fo, BW, DFormat)

Description

IIR notch filter design, defined as:

𝐻(𝑧) =
1 − 2 cos𝑤𝑜𝑧

−1 + 𝑧−2

1 − 2𝑟 cos𝑤𝑜𝑧
−1 + 𝑟2𝑧−2

where, 𝑤𝑜 =
2𝜋𝑓𝑜

𝑓𝑠
 controls the centre frequency, 𝑓𝑜 of the notch, and 𝑟 = 1 −

𝜋𝐵𝑊

𝑓𝑠
 controls the bandwidth (-3dB point)

of the notch.

Fo: centre frequency of the notch.

BW: Bandwidth (-3dB point) of the notch. Where, 𝐵𝑊 ≤
𝐹𝑜

4

DFormat: allows you to specify the display format of resulting digital filter object.

symbolic Display a symbolic representation of the filter object. If the order > 10, the

symbolic display option will be overridden and set to numeric.
numeric Display a matrix representation of the filter object.
void Create a filter object, but do not display output.

Example

 ClearH1; // clear primary filter from cascade
ShowH2DesignMarkers; // show DM on chart

interface BW={5,40,2,10};

Main()

F=75;

Hd=notch(F,BW,"symbolic");

Num = getnum(Hd); // define numerator coefficients

Den = getden(Hd); // define denominator coefficients

Gain = getgain(Hd); // define gain

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 21
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.5.7. dcremover

Syntax
Hd = dcremover (Fc, DFormat)

Description

Implements a first order IIR highpass filter (DC component remover), defined as:

𝐻(𝑧) =
1

(𝑤 + 1)
[

1 − 𝑧−1

1 +
𝑤 − 1
𝑤 + 1

𝑧−1
]

Fc: -3dB cut-off frequency, given by: w = tan (
𝜋𝐹𝑐

𝑓𝑠
)

DFormat: allows you to specify the display format of resulting digital filter object.

symbolic Display a symbolic representation of the filter object.
numeric Display a matrix representation of the filter object.
void Create a filter object, but do not display output.

Example

 ClearH1; // clear primary filter from cascade
ShowH2DesignMarkers; // show DM on chart

Main()

F=5;

Hd=dcremover(Fc,"symbolic");

Num = getnum(Hd); // define numerator coefficients

Den = getden(Hd); // define denominator coefficients

Gain = getgain(Hd); // define gain

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 22
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.6. FIR design methods

A summary of all FIR filter design methods that are supported is given in this section.

2.6.1. movaver

Syntax
Hd = movaver(Order,DFormat)

Description

Moving average FIR filter design. The moving average (MA) filter is probably one of the most widely used FIR filters

due to its conceptual simplicity and ease of implementation. However, despite its simplicity, the moving average filter

is optimal for reducing random noise while retaining a sharp step response. Where a simple rule of thumb states that

the amount of noise reduction is equal to the square-root of the number of points in the average. For example, an MA

of length 9 will result in a factor 3 noise reduction.

Order: may be specified up to 499 (professional) and up to 128 (educational) edition.

DFormat: allows you to specify the display format of resulting digital filter object.

symbolic Display a symbolic representation of the filter object. If the order > 10, the

symbolic display option will be overridden and set to numeric.
numeric Display a matrix representation of the filter object.
void Create a filter object, but do not display output.

 ClearH1; // clear primary filter from cascade

Main()

Hd=movaver(8,"symbolic");

Num = getnum(Hd); // define numerator coefficients

Den = {1}; // define denominator coefficients

Gain = getgain(Hd); // define gain

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 23
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.6.2. firwin

Syntax
Hd = firwin(Order,Frequencies,Window,Type,DFormat)

Description

FIR filter design based on the Window method.

Order: may be specified up to 499 (professional) and up to 128 (educational) edition.

Frequencies: lowpass and highpass are specified via one cut-off frequency, whereas bandpass, bandstop and

hilbert filters require two frequencies (i.e. lower and upper cut-off). All frequencies must be ascending in order and <

Nyquist (see the example below).

Window: The firwin method supports the following window functions: rectangular, blackman,

blackmanharris, hamming, hanning, flattop and Chebyshev.

Type: The firwin method facilitates the design of lowpass, highpass, bandpass, bandstop and hilbert

filters respectively.

Hd: the firwin method designs an FIR window filter based on the entered specifications and places the transfer

function (i.e. numerator and gain) into a digital filter object, Hd. The digital filter object can then be combined with

other methods if so required. For a digital filter object, Hd, calling getnum(Hd)and getgain(Hd) will extract the

numerator and gain coefficients respectively – see below.

DFormat: allows you to specify the display format of resulting digital filter object.

symbolic Display a symbolic representation of the filter object. If the order > 10, the

symbolic display option will be overridden and set to numeric.
numeric Display a matrix representation of the filter object.
void Create a filter object, but do not display output.

Examples

ClearH1; // clear primary filter from cascade

ShowH2DesignMarkers;

interface L = {10,400,10,50};

Main()

F={40,90};

Hd=firwin(L,F,"hamming","bandstop","numeric"); // Bandpass with a Hamming window

Hd=firwin(L,F,"hanning","hilbert","numeric"); // Hilbert with a Hanning Window

Num=getnum(Hd);

Den={1};

Gain=getgain(Hd);

https://en.wikipedia.org/wiki/Finite_impulse_response#Window_design_method

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 24
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.6.3. firarb

Syntax
Hd = firarb(Order,Amplitude,Frequencies,Window,DFormat)

Description

Designs an FIR window based filter with an arbitrary magnitude response.

Order: may be specified up to 499 (professional) and up to 128 (educational) edition.

Amplitude: a vector of the magnitude specification in dB.

Frequencies: a vector of the frequency specification. The first element must be 0 and the last element equal to

Nyquist – see below.

Window: The firarb method supports the following window functions: rectangular, blackman,

blackmanharris, hamming, hanning, flattop and Chebyshev.

Hd: the firarb method designs an FIR filter based on the entered specifications and places the transfer function

(i.e. numerator and gain) into a digital filter object, Hd. The digital filter object can then be combined with other

methods if so required. For a digital filter object, Hd, calling getnum(Hd)and getgain(Hd) will extract the

numerator and gain coefficients respectively – see below.

DFormat: allows you to specify the display format of resulting digital filter object.

symbolic Display a symbolic representation of the filter object. If the order > 10, the

symbolic display option will be overridden and set to numeric.
numeric Display a matrix representation of the filter object.
Void Create a filter object, but do not display output.

Example

ClearH1; // clear primary filter from cascade

ShowH2DesignMarkers;

interface L = {10,400,10,50};

Main()

A=series(0,-1,-40);

F=series(10,90/(length(A)-1),100);

A={0,A,-100,-100}; // specify arb response

F={0,F,101,fs/2}; //

Hd=firarb(L,A,F,"hanning","numeric");

Num=getnum(Hd);

Den={1};

Gain=getgain(Hd);

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 25
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

Running the script shown pre-leaf, we obtain the following plots (with and without the design markers). Where, it can

be seen that the design specifications have been met.

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 26
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.6.4. firkaiser

Syntax
Hd = firkaiser(Frequencies,Rs,Type,DFormat)

Description

Designs an FIR filter based on the Kaiser window method.

The method automatically determines the required filter order (499 (professional) and up to 128 (educational)
edition) and returns coefficients in Hd.

Frequencies: lowpass and highpass are specified via one cut-off frequency, whereas bandpass, bandstop and

hilbert filters require two frequencies (i.e. lower and upper cut-off). All frequencies must be ascending in order and <

Nyquist (see the example below).

Type: The firkaiser method facilitates the design of lowpass, highpass, bandpass, bandstop, hilbert3

(Type 3 Hilbert), hilbert4 (Type 4 Hilbert), integrator3, integrator4, differentiator3 and

differentiator4 filters respectively.

Hd: the firkaiser method designs an FIR window filter based on the entered specifications and places the transfer

function (i.e. numerator and gain) into a digital filter object, Hd. The digital filter object can then be combined with

other methods if so required. For a digital filter object, Hd, calling getnum(Hd)and getgain(Hd) will extract the

numerator and gain coefficients respectively – see below.

DFormat: allows you to specify the display format of resulting digital filter object.

symbolic Display a symbolic representation of the filter object. If the order > 10, the

symbolic display option will be overridden and set to numeric.
numeric Display a matrix representation of the filter object.
void Create a filter object, but do not display output.

Example

ClearH1; // clear primary filter from cascade

ShowH2DesignMarkers;

interface F = {10,80,2,40}; // frequency spec (2 bands for bandstop)

interface TW ={10,40,2,20}; // Band transition width

Main()

Freq={F,F+TW,100+TW,125+TW}; // frequency specification

Hd=firkaiser(Freq,60,"bandstop","numeric");

Num=getnum(Hd);

Den={1};

Gain=getgain(Hd);

https://en.wikipedia.org/wiki/Kaiser_window

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 27
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.6.5. firgauss

Syntax
Hd = firgauss(L,Gain,Alpha,DFormat)

Description

Designs an FIR Gaussian lowpass filter. Gaussian filters are good pulse shaping filters, and as such are typically used

in communication systems, as they have no overshoot and fast transitions. The function returns a Gaussian window

of length L with a standard deviation, 𝜎

𝜎 =
𝐿 − 1

2𝛼

As seen, the width of the window (standard deviation) is inversely related to alpha(𝛼), i.e. a smaller value of 𝛼

produces a tighter transition frequency band in the frequency domain and vice versa. A good default value is 2.5.

Hd: the firgauss method designs an FIR Gaussian lowpass filter based on the entered specifications and places

the transfer function (i.e. numerator and gain) into a digital filter object, Hd. The digital filter object can then be

combined with other methods if so required. For a digital filter object, Hd, calling getnum(Hd)and getgain(Hd)

will extract the numerator and gain coefficients respectively – see below.

DFormat: allows you to specify the display format of resulting digital filter object.

symbolic Display a symbolic representation of the filter object. If the order > 10, the

symbolic display option will be overridden and set to numeric.
numeric Display a matrix representation of the filter object.
void Create a filter object, but do not display output.

Example

ClearH1; // clear primary filter from cascade

interface L = {2,100,1,14}; // filter length

interface alpha = {0.5,10,0.1,2.5}; // standard deviation = (L – 1)/(2*alpha)

Main()

Hd=firgauss(L,1,alpha,"symbolic");

Num=getnum(Hd);

Den={1};

Gain=getgain(Hd);

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 28
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.6.6. savgolay

Syntax
Hd = savgolay(Order, Polyfit, DFormat)

Description

Design an FIR Savitzky-Golay lowpass smoothing filter. Savitzky-Golay (polynomial) smoothing filters or least-squares

smoothing filters are generalizations of the FIR average filter that can better preserve the high-frequency content of

the desired signal, at the expense of not removing as much noise as an FIR average (see movaver for more

information). The particular formulation of Savitzky-Golay filters preserves various moment orders better than other

smoothing methods, which tend to preserve peak widths and heights better than Savitzky-Golay.

Order: may be specified up to 499 (professional) and up to 128 (educational) edition.

Polyfit: Polynomial fit, which must be < Order+1

Hd: the savgolay method designs an FIR Savitzky-Golay lowpass smoothing filter based on the entered

specifications and places the transfer function (i.e. numerator and gain) into a digital filter object, Hd. The digital filter

object can then be combined with other methods if so required. For a digital filter object, Hd, calling getnum(Hd)and

getgain(Hd) will extract the numerator and gain coefficients respectively – see below.

DFormat: allows you to specify the display format of resulting digital filter object.

symbolic Display a symbolic representation of the filter object. If the order > 10, the

symbolic display option will be overridden and set to numeric.
numeric Display a matrix representation of the filter object.
void Create a filter object, but do not display output.

Examples

ClearH1; // clear primary filter from cascade

interface L = {2, 50,2,24};

interface P = {2, 10,1,4};

Main()

Hd=savgolay(L,P,"numeric"); // Design Savitzky-Golay lowpass filter

Num=getnum(Hd);

Den={1};

Gain=getgain(Hd);

https://en.wikipedia.org/wiki/Savitzky%E2%80%93Golay_filter

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 29
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.6.7. cplxfreqshift

Syntax
Hds=cplxfreqshift(Hd,Fo,DFormat)

Description
Apply a Complex frequency shift transformation to the digital transfer function object (Hd) centred at frequency point,

Fo. Where, Fo is specified in same base unit as the sampling frequency, Fs, i.e. Hz, kHz etc. The function returns a

new (frequency shifted) digital transfer object in Hds.

This transform may be used for designing a complex bandpass filter, whereby a real lowpass filter’s frequency

response is shifted up or down the spectrum in order to produce a complex bandpass filter. Complex bandpass filters

are useful for communication applications and signal property analysis, as they provide a simple way of obtaining the

instantaneous frequency, phase and amplitude of sinusoid.

DFormat: allows you to specify the display format of resulting digital filter object.

symbolic Display a symbolic representation of the filter object. If the order > 10, the

symbolic display option will be overridden and set to numeric.
numeric Display a matrix representation of the filter object.
void Create a filter object, but do not display output.

ClearH1; // clear primary filter from cascade

interface f = {1,200,1,2}; // define cut-off frequency

interface fo = {0,200,10,10}; // define centre frequency of bandpass

interface Rs = {10,100,5,60}; // define stopband attenuation

interface BW = {1,100,1,5}; // define bandwidth

Main()

fc={f,f+BW}; // define a transition band

Rp=0.001; // define passband ripple in dB

Hd=butter(5,fc,Rp,Rs,"lowpass","void"); // 5th order Type II Chebyshev lowpass

Hd=cplxfreqshift(Hd,fo,"symbolic"); // shift lowpass filter poles and zeros,

// and make a bandpass

Num=getnum(Hd); // get numerator coefficients

Den=getden(Hd); // get denominator

Gain=getgain(Hd); // get gain

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 30
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.7. Analog → digital filter design: Laplace transforms

Laplace analog transfer functions may be entered and converted into their digital equivalents via the following

commands:

2.7.1. analogtf

Syntax
Ha=analogtf(ANum, ADen, AGain, DFormat)

Description
Define an analog filter object. Where, the ANum and ADen vectors are the Laplace transfer function coefficients in
descending order.

Example
A first order analog lowpass filter may be designed by an RC network:

Choosing R=100k and C=100nF, gives cut-off at 100rad/s or ≈ 15.9Hz. The analog transfer function may be simply

implemented in FilterScript (output shown on the right) as:

This analog filter object may be now transformed into a digital filter via the Bilinear or Match Z-transform methods.
See the example script AnalogRCfilter.afs for more information.

R

C Vin Vout

𝑉𝑜𝑢𝑡(𝑠)

𝑉𝑖𝑛(𝑠)
=

𝑤𝑐
𝑠 + 𝑤𝑐

; 𝑤𝑐 =
1

𝑅𝐶

Main()

wc=100; // 1/(R*C);

ANum={0,1};

ADen={1,wc};

AGain=wc;

Ha=analogtf(ANum,ADen,AGain,"symbolic");

https://en.wikipedia.org/wiki/RC_circuit#Series_circuit
https://en.wikipedia.org/wiki/Bilinear_transform
https://en.wikipedia.org/wiki/Matched_Z-transform_method

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 31
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.7.2. bilinear

Syntax
Hd=bilinear(Ha,DFormat)

Description
Convert an analog filter object to its digital equivalent using the Bilinear transform (S→Z transformation).

Pre-warping and scaling: the bilinear method automatically pre-warps the analog transfer function frequencies in

order to ensure that the resulting digital cut-off frequency specifications match the analog specifications. A further

gain scaling operating is automatically performed in order to match the gain specification.

Hd: the bilinear method designs an IIR filter based on the analog filter object, Ha and places the transfer function

(i.e. numerator and gain) into a digital filter object, Hd. The digital filter object can then be combined with other

methods if so required. For a digital filter object, Hd, calling getnum(Hd), getden(Hd)and getgain(Hd) will

extract the numerator, denominator and gain coefficients respectively – see below.

DFormat: allows you to specify the display format of resulting digital filter object.

symbolic Display a symbolic representation of the filter object. If the order > 10, the

symbolic display option will be overridden and set to numeric.
numeric Display a matrix representation of the filter object.
Void Create a filter object, but do not display output.

Example

See page 30 for a description of the analog RC filter model used in this example.

ClearH1; // clear primary filter from cascade

interface wc={20,200,10,100}; // wc=1/(R*C);

Main()

// define analog RC filter

ANum={0,1};

ADen={1,wc};

AGain=wc;

Ha=analogtf(ANum,ADen,AGain,"symbolic");

Hd=bilinear(Ha,"symbolic");

Num = getnum(Hd); // define numerator coefficients

Den = getden(Hd); // define denominator coefficients

Gain = getgain(Hd); // define gain

https://en.wikipedia.org/wiki/Bilinear_transform

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 32
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.7.3. mztrans

Syntax
Hd=mztrans(Ha,DFormat)

Description
Convert an analog filter object to its digital equivalent using the Match Z-transform (S→Z transformation).

Hd: the bilinear method designs an IIR filter based on the analog filter object, Ha and places the transfer function

(i.e. numerator and gain) into a digital filter object, Hd. The digital filter object can then be combined with other

methods if so required. For a digital filter object, Hd, calling getnum(Hd), getden(Hd)and getgain(Hd) will

extract the numerator, denominator and gain coefficients respectively – see below.

DFormat: allows you to specify the display format of resulting digital filter object.

symbolic Display a symbolic representation of the filter object. If the order > 10, the

symbolic display option will be overridden and set to numeric.
numeric Display a matrix representation of the filter object.
Void Create a filter object, but do not display output.

Example

See page 30 for a description of the analog RC filter model used in this example.

ClearH1; // clear primary filter from cascade

interface wc={20,200,10,100}; // wc=1/(R*C);

Main()

// define analog RC filter

ANum={0,1};

ADen={1,wc};

AGain=wc;

Ha=analogtf(ANum,ADen,AGain,"symbolic");

Hd=mztrans(Ha,"symbolic");

Num = getnum(Hd); // define numerator coefficients

Den = getden(Hd); // define denominator coefficients

Gain = getgain(Hd); // define gain

https://en.wikipedia.org/wiki/Matched_Z-transform_method

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 33
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.7.4. Miscellaneous analog filter design functions

Function Syntax Description

augment Ha=augment(Ha1,Ha2)
Augment or merge two analog filter objects, and return the

merged objects as a single object in Ha.

computegain G=computegain(Ha,Fo)

Get the gain, G of the analog filter (Ha) at frequency point,

Fo. Where, Fo is specified in same base unit as the sampling

frequency, Fs, i.e. Hz, kHz etc.

getnum Num = getnum(Ha) Get the numerator coefficients of analog filter object, Ha.

getden Den = getden(Ha) Get the denominator coefficients of analog filter object, Ha.

getgain G = getgain(Ha) Get the gain of analog filter object, Ha.

2.8. Loading an external coefficient datafile

You may import a vector of data/coefficients into FilterScript via the importdata function:

h=importdata(Filename)

Where, Filename must be the full pathname and filename entered in quotes, e.g.

h=importdata("c:\Temp\sg.txt");

All data must be single lined and followed by a comma.

Complex data may be imported by using the i or j

keyword.

The vector definition must be preceded with a { brace and

closed with a };

A maximum of 200 values may be imported.

Comments may be placed anywhere, and must be

preceded with the // keyword.

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 34
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.9. General syntax and data manipulation

Function Description

General
All variables may contain upper and lower case characters, and numbers. e.g. Num1,
myGain, alpha15

Interface Variables The interface keyword must be used to define all interface variables.

Matrices

A generalised matrix is defined as A(rows,columns). Although matrix assignment
is not supported, certain vector operations may result in a matrix result, e.g. the vector
multiplication: A=a*transpose(a). All data indexes run from 0...N, you may
access a matrix element at row R and column M as: y=A(R,M). However, you may
also access a range of values using the : keyword, e.g. Y=A(3:5,1:2)which
produces a new matrix Y. For modifying a value of a matrix/vector, use the eldef

function, e.g. a(2,1)=eldef(5)

Vector assignment

By default, a vector is defined as an array with multiple rows and one column. It may
contain expressions, variables and constants and must be enclosed in braces { }
with comma delimitation.

Example: b = {1,0,3.4,0,1};
Example: A = {1,-2*cos(TwoPi*fc/fs),1};

Vector manipulation

In order to accommodate transposed vectors, all vectors are defined as a generalised
matrix, i.e. A(rows,columns). By default, a vector of length N is defined as
A(N,1), whereas a transposed vector is defined as A(1,N). As all data indexes run
from 0...N, you may access vector element M as: y=A(M,0). However, you may also
access a range of values using the : keyword, e.g. y=A(3:5,0). For modifying a
value of a vector, use the eldef function.

Example

a = {1,0,3.4,0,1}; // assign five elements to vector a
a(2,0)=eldef(5); // set element three to 5
y=a(0,0); // get element zero and assign it to y

Data series

A real valued data series can be created with the following syntax:

y = series(min,step,max)

where, step represents the step size between min (minimum) and max (maximum).

Example

a=series(-12,1,1.2);

User comments
All user comments must be preceded with the // keyword. Where, the /* */
syntax is not supported.

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 35
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

2.10. System variables and reserved constants

There are several system variables and constants which can be used in every script and expression.

Variable Description

fs
The fs variable specifies the system sampling frequency in its frequency scale, i.e.

50MHz is given as 50, rather than 50e6 Hz

Ts The Ts variable specifies the system sampling period Ts=1/fs

pi 3.14159265358979

Twopi 6.28318530717959

i Complex number token, √−1

2.11. Mandatory keywords

The following keywords must be present in every script.

Variable Description

Main()
Main()is used to seperate the initialisation code from the "main" code - see

section 1.1 for more information.

ClearH1
The ClearH1 keyword is not mandatory, but if included will delete the H1 filter

from the cascade.

Den Den specifies the denominator filter coefficients. This must be a vector.

Num Num specifies the denominator filter coefficients. This must be a vector.

Gain Gain specifies the filter gain. This must be real.

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 36
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

3. General example scripts

The following section is a collection of example scripts bundled with the software. All script files are .afs files

which can be found in the Scripts\Examples directory.

3.1. Moving average filter (movingaverage.afs)

The moving average (MA) filter is probably one of the most

widely used FIR filters due to its conceptual simplicity and

ease of implementation. However, despite its simplicity, the

moving average filter is optimal for reducing random noise

while retaining a sharp step response. Where a simple rule

of thumb states that the amount of noise reduction is equal

to the square-root of the number of points in the average. For

example, an MA of length 9 will result in a factor 3 noise

reduction.

Reference: Understanding Digital Signal Processing,
Chapter 5, R. G. Lyons

The following script implements an adjustable length moving

average filter. The interface variable L is used to set the filter

length between 1 and 100.

ClearH1; // clear primary filter from cascade

interface L = {1,100,1,10}; // model length (order = length - 1)

Main()

Num = {ones(L)}; // moving average filter coefficients

Den = {1};

Gain = 1/L;

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 37
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

3.2. HPF (BilinearHPF.afs)

It is sometimes useful to transform an analogue filter into

its digital/discrete equivalent. Although there are several

transformation methods, the Bilinear z-transform (BZT) is a

very popular method and is therefore used for this example.

Central to the BZT concept is the S-Z transformation which

maps an analogue transfer function, 𝐻(𝑠) into its digital

equivalent 𝐻(𝑧):

𝑠 =
2

𝑇

𝑧 − 1

𝑧 + 1

where, T is the discrete system’s sampling period. However,

substituting 𝑠 = 𝑒𝑗Ω and 𝑧 = 𝑒𝑗𝑤 into the above equation

and simplifying, we see that there is actually a non-linear

relationship between the analogue, Ω and discrete, w

frequencies. This relationship is shown below and is due to

the nonlinearity of the arctangent function.

 𝑤 = 2𝑡𝑎𝑛−1 (
Ω𝑇

2
)

Design example

A first order Laplace highpass transfer function is given by:

𝐻(𝑠) =
𝑠

𝑠 + 𝑤
 ; w = tan (

𝜋𝑓

𝑓𝑠
)

Applying the BZT to 𝐻(𝑠), we obtain:

𝐻(𝑧) =
1

(𝑤 + 1)
[

1 − 𝑧−1

1 +
𝑤 − 1
𝑤 + 1

𝑧−1
]

The implementation of 𝐻(𝑧) is given below, where the cut-off frequency (-3dB point) is adjustable between 0 ≤

𝑓 ≤ 𝑓𝑠/2

ClearH1; // clear primary filter from cascade

interface f = {0,fs/2,1,10}; // interface variable definition

Main()

w=tan(f*pi/fs);

Num = {1,-1}; // define numerator coefficients

Den = {1,(w-1)/(w+1)}; // define denominator coefficients

Gain = 1/(w+1); // define gain

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 38
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

3.3. Second order all-pass filter (SecondOrderAllPass.afs)

All-pass filters provide a simple way of altering/improving

the phase response of an IIR without affecting its magnitude

response. As such, they are commonly referred to as phase

equalisers and have found particular use in digital audio

applications.

A second order all-pass filter is defined as:

𝐻(𝑧) =
𝑟2 − 2𝑟𝑐𝑜𝑠 (

2𝜋𝑓𝑐
𝑓𝑠

) 𝑧−1 + 𝑧−2

1 − 2𝑟𝑐𝑜𝑠 (
2𝜋𝑓𝑐
𝑓𝑠

) 𝑧−1 + 𝑟2𝑧−2

Notice how the numerator and denominator coefficients are

arranged as mirror image (mirror-image pair) of one another.

Reference: The digital All-pass Filter: A versatile signal
processing building block, Regalia, Mitra et al., Proceedings IEEE, vol 76, January 1988.

The following script implements the symbolic transfer function with two interface variables radius and fc.

ClearH1; // clear primary filter from cascade

interface radius = {0,2,0.01,0.5}; // radius value

interface fc = {0,fs/2,1,fs/10}; // frequency value

Main()

Num = {radius^2,-2*radius*cos(Twopi*fc/fs),1}; // mirror image pair

Den = reverse(Num);

Gain = 1;

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 39
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

3.4. Allpass Peaking/Bell filter (AllpassPeaking.afs)

A Bell or Peaking filter is a type of audio

equalisation filter that boosts or attenuates the

magnitude of a specified set of frequencies around

a centre frequency in order to perform magnitude

equalisation. As seen in the plot on the right-hand

side, the filter gets its name from the shape of the

its magnitude spectrum (blue line) which resembles

a Bell curve.

A Bell filter can be constructed from an all-pass

configuration (see section 3.3) by the following

transfer function:

𝐻(𝑧) =
(1 + 𝐾) + 𝐴(𝑧)(1 − 𝐾)

2

where, 𝐴(𝑧) is the all-pass filter component:

𝐻(𝑧) =
1

2
[(1 + 𝐾) +

𝑘2 + 𝑘1(1 + 𝑘2)𝑧
−1 + 𝑧−2

1 + 𝑘1(1 + 𝑘2)𝑧
−1 + 𝑘2𝑧

−2⏟
all-pass filter

(1 − 𝐾)]

ClearH1; // clear primary filter from cascade

interface BW = {0,2,0.1,0.5}; // filter bandwidth

interface fc = {0, fs/2,fs/100,fs/4}; // peak/notch centre frequency

interface K = {0,3,0.1,0.5}; // gain/sign

Main()

k1=-cos(2*pi*fc/fs);

k2=(1-tan(BW/2))/(1+tan(BW/2));

Pz = {1,k1*(1+k2),k2}; // define denominator coefficients

Qz = {k2,k1*(1+k2),1}; // define numerator coefficients

Num = (Pz*(1+K) + Qz*(1-K))/2;

Den = Pz;

Gain = 1;

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 40
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

3.5. AllpassNotch (AllpassNotch.afs)

A notch filter can be constructed from an all-pass

configuration (see section 3.3) by the following

transfer function:

𝐻(𝑧) =
1

2
[1 + 𝐴(𝑧)]

where, 𝐴(𝑧) is the all-pass filter component:

𝐻(𝑧) =
1

2
[1 +

𝑘2 + 𝑘1(1 + 𝑘2)𝑧
−1 + 𝑧−2

1 + 𝑘1(1 + 𝑘2)𝑧
−1 + 𝑘2𝑧

−2⏟
all-pass filter

]

𝑘1 = −cos (
2𝜋𝑓

𝑓𝑠
) controls the centre frequency of the

notch, and 𝑘2 =
1−tan (𝐵𝑊/2)

1+tan (𝐵𝑊/2)
 controls the bandwidth

of the notch.

Reference: The digital All-pass Filter: A versatile signal processing building block, Regalia, Mitra et al., Proceedings
IEEE, vol 76, January 1988.

ClearH1; // clear primary filter from cascade

interface BW = {0,2,0.1,0.5}; // interface variable definition

interface fc = {0, fs/2,fs/100,fs/4};

Main()

k1=-cos(2*pi*fc/fs);

k2=(1-tan(BW/2))/(1+tan(BW/2));

Den = {1,k1*(1+k2),k2}; // define denominator coefficients

Num = {k2,k1*(1+k2),1}; // define numerator coefficients

Num = (Num+Den)/2;

Gain = Num(0,0)/Den(0,0); // compsensate gain for normalisation

Num=Num/Num(0,0); // normalise numerator

Den=Den/Den(0,0); // normalise denominator

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 41
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

3.6. Notch (Notch.afs)

The primary purpose of a Notch filter is to attenuate (minimize) a

specific frequency point in the spectrum, while leaving the rest of

the spectrum unaffected. Notch filters are extensively used in

audio and sensor signal processing applications in order to

minimize the effects of 50/60Hz powerline interference on

measured signals.

A notch filter may be defined as:

𝐻(𝑧) =
1 − 2 cos𝑤𝑐𝑧

−1 + 𝑧−2

1 − 2𝑟 cos𝑤𝑐𝑧
−1 + 𝑟2𝑧−2

where, 𝑤𝑐 =
2𝜋𝑓𝑐

𝑓𝑠
 controls the centre frequency, 𝑓𝑐 of the notch,

and 𝑟 controls the bandwidth of the notch. The symbolic
expressions are implemented as follows:

ClearH1; // clear primary filter from cascade

interface r = {0,1,0.1,0.5}; // radius range

interface fc = {0, fs/2,fs/100,fs/4}; // centre frequency range

Main()

wc=Twopi*fc/fs;

Num = {1,-2*cos(wc),1}; // define numerator coefficients

Den = {1,-2*r*cos(wc),r^2}; // define denominator coefficients

Gain = sum(Den)/sum(Num); // normalise gain at DC

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 42
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

3.7. Comb (comb.afs)

The frequency response of a comb filter consists of a series of regularly-spaced troughs, giving the appearance of a

comb. Where the spacing of each trough appears at

either odd or even harmonics of the desired

fundamental frequency. Thus, an FIR comb filter can be

described by the following transfer function:

𝐻(𝑧) = 1 + 𝛼𝑧−𝐿

where, 𝛼 is used to set the Q (bandwidth) of the notch

and may be either positive or negative depending on

what type of frequency response is required. In order to

elaborate on this, negative values of 𝛼 have their first

trough at DC and their second trough at the fundamental

frequency. Clearly this type of comb filter can be used

to remove any DC components from a measured

waveform if so required. All subsequent troughs appear

at even harmonics up to and including the Nyquist

frequency.

Positive values of 𝛼 on the other hand, only have

troughs at the fundamental and odd harmonic

frequencies, and as such cannot be used to remove any

DC components.

ClearH1; // clear primary filter from cascade

interface L = {4,20,1,5}; // filter length

interface alpha = {-1,1,0.01,0.99};

Main()

Num = {1,zeros(L-1),alpha}; // numerator coefficients

Den = {1};

Gain = 1/sum(abs(Num));

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 43
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

3.8. Fractional Farrow Delay

In signal processing, the need sometimes arises to nudge or fine-tune the sampling instants of a signal by a fraction

of a sample. An FIR Farrow delay filter is

typically employed to achieve this task, and

may be combined with a traditional integer

delay line in order to achieve a universal

fractional length delay line.

A Fractional delay based on an FIR Farrow

structure may be defined as:

𝐻(𝑧) = (1 − 𝛼) + 𝛼𝑧−1; 0 ≤ 𝛼 ≤ 1

Which produces a fractional linear delay of 𝛼

between 0 and 1 samples. However, a more

universal building block can be achieved by

combining the Farrow delay structure with an

integer delay, ∆

𝐻(𝑧) = (1 − 𝛼)𝑧−∆ + 𝛼𝑧−(∆+1)

The plot shown on the right shows the

magnitude (blue) and phase (purple) spectra

for ∆ = 9, 𝛼 = 0.52. As seen, the fractional delay element results in a non-flat magnitude spectrum at higher

frequencies.

ClearH1; // clear primary filter from cascade

interface alpha = {0,1,0.02,.5}; // fractional delay

interface D = {1,30,1,10}; // integer delay

Main()

Num = {zeros(D),1-alpha,alpha}; // numerator coefficients

Den = {1}; // denominator coefficient

Gain = 1/sum(Num); // normalise gain at DC

Reference: ASN17-DOC002 Rev 2

Document Status: Public release Page: 44
Copyright © 2018 Advanced Solutions Nederland BV. All rights reserved.

Document Revision Status

Rev. Description Date

1 Document updated for v4 and released. 26/09/2017

2 Updated document for v4.0.7 release 24/02/2017

	Legal notices
	Technical documentation feedback
	Summary
	1. Filter script IDE
	1.1. Code structure
	1.2. Interface variables
	1.2.1. User interface

	2. The Scripting language
	2.1. Trigonometrical functions
	2.2. Vector functions
	2.3. General functions
	2.4. Math operators
	2.5. IIR filter design
	2.5.1. ellip
	2.5.2. butter
	2.5.3. cheby1
	2.5.4. cheby2
	2.5.5. bessel
	2.5.6. notch
	2.5.7. dcremover

	2.6. FIR design methods
	2.6.1. movaver
	2.6.2. firwin
	2.6.3. firarb
	2.6.4. firkaiser
	2.6.5. firgauss
	2.6.6. savgolay
	2.6.7. cplxfreqshift

	2.7. Analog → digital filter design: Laplace transforms
	2.7.1. analogtf
	2.7.2. bilinear
	2.7.3. mztrans
	2.7.4. Miscellaneous analog filter design functions

	2.8. Loading an external coefficient datafile
	2.9. General syntax and data manipulation
	2.10. System variables and reserved constants
	2.11. Mandatory keywords

	3. General example scripts
	3.1. Moving average filter (movingaverage.afs)
	3.2. HPF (BilinearHPF.afs)
	3.3. Second order all-pass filter (SecondOrderAllPass.afs)
	3.4. Allpass Peaking/Bell filter (AllpassPeaking.afs)
	3.5. AllpassNotch (AllpassNotch.afs)
	3.6. Notch (Notch.afs)
	3.7. Comb (comb.afs)
	3.8. Fractional Farrow Delay

	Document Revision Status

