A leading coffee manufacturer wanted to add a function to their coffee machines that could fill every kind of mug (small, large, glass, ceramic) fully or half-fully. The requirement was that system must be able to automatically find the dimensions of the mug and track the filling process in real-time without human intervention.

A lot of time is wasted due to coffee spills due to overfilled coffee mugs, but the challenge was to see if this could be done for a reasonably low cost – around 10 EUR.

As no other coffee machine manufacturer had a flexible solution for their coffee machines, this would give them a competitive advantage as well as add a exciting new gadget to their product portfolio.

Find out how we solved this challenge here: coffee drinks dispenser case

Until now, the professional use of drones is mostly still in an experimenting stage. However, drones are one of the golden nuggets in IoT because they can play a pivotal role, for instance in congested cities and faraway areas for delivery. Further, they can be a great help to give an overview of a large area or for places which are difficult or dangerous to reach.

In one of our previous blogs, we concluded that sensor measurement has mostly been a case of trial and error. In this blog, we list some of the challenges we see for sensor measurement which has to be solved to bring the professional use of drones to full maturity.

Practical challenges which can and must be solved with sensors

Here are some of the challenges we have found:

  • Risk of colliding, with other drones, birds and other air users. Just like other traffic
  • And at point in time, some traffic rules have to be set in place. Sensors can help to let the drone follow these rules
  • How drones can stay on course, even with wind
  • Preventing drones to cross over forbidden (known) areas and unexpected ‘wrong’ areas (e.g. a building or a wood on fire)
  • Challenges with unloading the package:
    • Without damage
    • Without harming people, animals, buildings
    • How the drone will know that the right person gets the package? Can we prevent dogs from biting the package?
  • How to prevent a package from falling? How to alert that a package will probably fall? Or maybe the drone itself? If so, measurement can be taken. Already, there are experiments with self-destruction. But maybe more practical solutions can be found to let the drone aim for a ‘safe area’, such as a park, river, etc. for an ‘emergency landing’.

In all cases, ASN Filter Designer can help with sensor measurement with real-time feedback and the powerful signal analyser? How? Look at ASN Filter Designer or mail us: info@advsolned.com

Do you agree with this list? Do you have other suggestions? Please let us know!

Motor producers are beginning to see that they can add value through preventative maintenance. However, when we speak to motor producers, sometimes companies begin to laugh when we ask them if they deliver health care monitoring through sensors to their customers already. They think that preventative maintenance is an enemy of their motor production:

“if motors can be made to run longer, we have less to sell”.

And sometimes companies just look glassy-eyed:

“We’re an old-fashioned company”.

Customers want you to deliver solutions, not motors

This is old fashioned thinking indeed. And like every other lagged thinking, these companies will get obsolete.  In old days, you could sell a ‘product’ with features such and such. Nowadays, customers are solely interested in the solution a company delivers. Customers want their business to run smoothly and without downtime. In this way of thinking, a motor is not a thing with a rotor, bearings and such, but it is a means which guarantees that a whole production line runs smoothly and without interruption.

Safe and sound running motors makes a customer satisfied

So, customers are more satisfied when their motor is running properly. And when it begins not to run properly, they want to know beforehand before a slight disturbance has become a real problem. When they know beforehand, they can take proper action on time, which means lesser costs and in most cases without downtime or at least as short as possible. Because downtime affects the production line in the whole. When the motor has really problems, your customer is forced to get their production on hold for a long time. Then customers not only have to face bigger repair costs. But mostly, costs are higher because now the whole production line has fallen out.

Motor health care starts with sensors

By placing sensors in the vicinity of your motors or even building them in, you can monitor the running of your motors automatically. When a signal pops up that there might be a problem, an engineer can repair this motor. This is also the modern way: previously, engineers did their rounds of motor inspections, giving every motor attention. Now, engineers can focus on motors that need attention.

At Advanced Solutions Nederland, we can help you to deliver real solutions to your customers once again. Visit: https://www.advsolned.com/motor-health-care/ or drop us a line at: info@advsolned.com

Did you know that there are 23 billion IoT embedded devices currently deployed around the world? This figure is expected to grow to a whopping 1 trillion devices by 2050!

Less known, is that 80% of IoT devices are based around Arm’s Cortex-M microcontroller technology. Sometimes clients ask us if we support their Arm Cortex-M based demo-board of choice. The answer is simply: yes!

200+ IC vendors supported

The ASN Filter Designer has an automatic code generator for Arm Cortex-M cores, which means that we support virtually every Arm based demo-board: ST, Cypress, NXP, Analog Devices, TI, Microchip/Atmel and over 200+ other manufacturers. Our compatibility with Arm’s free CMSIS-DSP software framework removes the frustration of implementing complicated digital filters in your IoT application – leaving you with code that is optimal for Cortex-M devices and that works 100% of the time.

The Arm Cortex-M family of microcontrollers are an excellent match for IoT applications. Some of the advantages include:

  • Low power and cost – essential for IoT devices
  • Microcontroller with DSP functionality all-in-one
  • Embedded hardware security functionality
  • Cortex-M4 and M7 cores with hardware floating support (enhanced microcontrollers)
  • Freely available CMSIS-DSP C library: supporting over 60 signal processing functions

Automatic code generation for Arm’s CMSIS-DSP software framework

Simply load your sensor data into the ASN Filter Designer signal analyser and perform a detailed analysis. After identifying the wanted and unwanted components of your signal, design a filter and test the performance in real-time on your test data. Export the designed design to Arm MDK, C/C++ or integrate the filter into your algorithm in another domain, such as in Matlab, Python, Scilab or Labview.

Use the tool in your RAD (rapid application development) process, by taking advantage of the automatic code generation to Arm’s CMSIS-DSP software framework, and quickly integrate the DSP filter code into your main application code.

Let the tool analyse your design, and automatically generate fully compliant code for either the M0, M0+, M3, M4 and the newer M23 and M33 Cortex cores. Deploy your design within minutes rather than hours.

Proud Arm knowledge partner

We are proud that we are an Arm knowledge partner! As an Arm DSP knowledge partner, we will be kept informed of their product roadmap and progress for the coming years.

Try it for yourself and see the benefits that the ASN Filter Designer can offer your organisation by cutting your development costs by up to 75%!

How to choose between analog signal processing (ASP) and digital signal processing (DSP). How too chose for ASP or DSP; analog filters or digital filters?

 

Drones and DC motor control – How the ASN Filter Designer can save you a lot of time and effort

Drones are one of the golden nuggets in IoT. No wonder, they can play a pivotal role in congested cities and far away areas for delivery. Further, they can be a great help to give an overview of a large area or places which are difficult or dangerous to reach. However, most of the technology is still in its experimental stage.

Because drones have a lot of sensors, Advanced Solutions Nederland did some research on how drone producing companies have solved questions regarding their sensor technology, especially regarding DC motor control.

Until now: solutions developed with great difficulty

We found out that most producers spend weeks or even months on finding solutions for their sensor technology challenges. With the ASN Filter Designer, he/she could have come to a solution within days or maybe even hours. Besides, we expect that the measurement would be better too.

The biggest time coster is that until now algorithms were developed by handwork, i.e. they were developed in a lab environment and then tested in real-life. With the result of the test, the algorithm would be tweaked again until the desired results were reached. However, yet another challenge stems from the fact that a lab environment is where testing conditions are stable, so it’s very hard to make models work in real life. These steps result in rounds and rounds of ‘lab development’ and ‘real life testing’ in order to make any progress -which isn’t ideal!

How the ASN Filter Designer can help save a lot of time and effort

The ASN Filter Designer can help a lot of time in the design and testing of algorithms in the following ways:

  • Design, analyse and implement filters for drone sensor applications with real-time feedback and our powerful signal analyser.
  • Design filters for speed and positioning control for sensorless BLDC (brushless DC) motor applications.
  • Speed up deployment to Arm Cortex-M embedded processors.

 

Real-time feedback and powerful signal analyser

One of the key benefits of the ASN Filter Designer and signal analyser is that it gives real-time feedback. Once an algorithm is developed, it can easily be tested on real-life data. To analyse the real-life data, the ASN Filter Designer has a powerful signal analyser in place.

Design and analyse filters the easy way

You can easily design, analyse and implement filters for a variety of drone sensor applications, including: loadcells, strain gauges, torque, pressure, temperature, vibration, and ultrasonic sensors and assess their dynamic performance in real-time for a variety of input conditions.  With the ASN Filter Designer, you don’t have do to any coding yourself or break your head with specifications: you just have to draw the filter magnitude specification and the tool will calculate the coefficients itself.

Speed up deployment

Perform detailed time/frequency analysis on captured test datasets and fine-tune your design. Our Arm CMSIS-DSP and C/C++ code generators and software frameworks speed up deployment to a DSP, FPGA or micro-controller.

An example: designing BLDC motor control algorithms

BLDC (brushless DC) BLDC motors have found use in a variety of application areas, including: robotics, drones and cars. They have significant advantages over brushed DC motors and induction motors, such as: better speed-torque characteristics, high reliability, longer operating life, noiseless operation, and reduction of electromagnetic interference (EMI).

One advantage of BLDC motor control compared to standard DC motors is that the motor’s speed can be controlled very accurately using six-step commutation, making it a good choice for precision motion applications, such as robotics and drones.

Sensorless back-EMF and digital filtering

For most applications, monitoring of the back-EMF (back-electromotive force) signal of the unexcited phase winding is easier said than done, since it has significant noise distortion from PWM (pulse width modulation) commutation from the other energised windings. The  coupling  between  the  motor parameters, especially inductances, can induce ripple in the back-EMF signal that is synchronous with the PWM commutation.  As a consequence, this induced ripple on the back EMF signal leads to faulty commutation. Thus, the measurement challenge is how to accurately measure the zero-crossings of the back-EMF signal in the presence of PWM signals?

A standard solution is to use digital filtering, i.e. IIR, FIR or even a median (majority) filter. However, the challenge for most designers is how to find the best filter type and optimal filter specification for the motor under consideration.

The solution

The ASN Filter Designer allows engineers to work on speed and position sensorless BLDC motor control applications based on back-EMF filtering to easily experiment and see the filtering results on captured test datasets in real-time for various IIR, FIR and median (majority filtering) digital filtering schemes. The tool’s signal analyser implements a robust zero-crossings detector, allowing engineers to evaluate and fine-tune a complete sensorless BLDC control algorithm quickly and simply.

So, if you have a measurement problem, ask yourself:

Can I save time and money, and reduce the headache of design and implementation with an investment in new tooling?

Our licensing solutions start from just 125 EUR for a 3-month licence.

Find out what we can do for you, and learn more by visiting the ASN Filter Designer’s product homepage.

The internet of things (IoT) has gained tremendous popularity over the last few years, as many organisations strive to add IoT smart sensor technologies to their product portfolios. The basic paradigm centres around connecting everything to everything, and exchanging all data. This could be house hold appliances to more blue sky applications, such as smart cities. But what does this particularly mean for you?

Almost all IoT applications involve the use of sensors. But how do SME and even multi-national organisations transform their legacy product offering into a 21st century IoT application? One the first challenges that many organisations face is how to migrate to an IoT application while balancing design time, time to market, budget and risk.

Sounds interesting? Then read further….

We recently completed a project for a client who manufactured their own sensors, but wanted to improve their sensor measurement accuracy from ±10% to better than ±0.5% without going down the road of a massive re-design project.

 

The question that they asked us was simply: “Is it possible to get high measurement accuracy performance from a signal that is corrupted with all kinds of interference components without a hardware re-design?”

Our answer: “Yes, but the winning recipe centres around knowing what architectural building blocks to use”.

Traditionally, many design bureaus will evaluate the sensor performance and try and improve the measurement accuracy performance by designing new hardware and adding a few standard basic filtering algorithms to the software. This sort of intuitive approach can lead to very high development costs for only a modest increase in sensor performance. For many SMEs these costs can’t be justified, but perhaps there’s a better way?

Algorithms: the winning recipe

Algorithms and mathematics are usually regarded by many organisations as ‘academic black magic’ and are generally overlooked as a solution for a robust IoT commercial application. As a consequence very few organisations actually take the time to analytically analyse a sensor measurement problem, and those who do invent something tend to come up with something that’s only useable in the lab. There has been a trend over the years to turn to Universities or research institutes, but once again the results are generally too  academic and are based more on getting journal publications, rather than a robust solution suitable for the market.

Our experience has been that the winning recipe centres around the balance of knowing what architectural blocks to use, and having the experience to assess what components to filter out and what components to enhance.  In some cases, this may even involve some minor modifications to the hardware in order to simplify the algorithmic solution. Unfortunately, due to the lack of investment in commercially experienced, academically strong (Masters, PhD) algorithm developers and the pressure of getting a project to the finish line, many solutions (even from reputable multi-national organisations) that we’ve seen over the years only result in a moderate increase in performance.

Despite the plethora of commercially available data analysis software, many organisations opt to do basic data analysis in Microsoft Excel, and tend to stay away from any detailed data analysis as it’s considered an unnecessary academic step that doesn’t really add any value.   This missed opportunity generally leads to problems in the future, where products need to be recalled for a ‘round of patchwork’ in order solve the so called ‘unforeseen problems’. A second disadvantage is that performance of the sensors may be only satisfactory, whereas a more detailed look may have yielded clues on how make the sensor performance good or in some cases even excellent.

 Algorithms can save the day!

 “Although many organisations regard data analysis as a waste of money, our experience and customers prove otherwise.”

Investing in detailed data analysis at the beginning of a project usually results in some good clues as to what needs to be filtered out and what needs to be enhanced in order to achieve the desired performance.   In many cases,  these valuable clues allow  experienced algorithm developers to concoct a combination of signal processing building blocks without re-designing any hardware – which is very desirable for many organisations! Our experience has shown that this fundamental first step can cut project development costs by as much as 75%, while at the same time achieving the desired smart sensor measurement performance demanded by the market.

So what does this all mean in the real world?

Returning the story of our customer, after undertaking a detailed data analysis of their sensor data, our developers were able design a suitable algorithm achieving a ±0.1% measurement accuracy from the original ±10% with only minor modifications to the hardware. This enabled the customer to present his IoT application at a trade show and go into production on time, and yes, we stayed within budget!

Author

  • Sanjeev is a RTEI (Real-Time Edge Intelligence) visionary and expert in signals and systems with a track record of successfully developing over 25 commercial products. He is a Distinguished Arm Ambassador and advises top international blue chip companies on their AIoT/RTEI solutions and strategies for I4.0, telemedicine, smart healthcare, smart grids and smart buildings.

    View all posts

The internet of things (IoT) devices have been around for a number of years now, but very few smart sensors have any decent level of data security. For many organisations the issue of data security and secure remote updates to legacy products has become of paramount importance. Unfortunately, many of the engineers who design sensor products have little or no understanding a security algorithms, leading to systems that can be easily hacked – the fiasco of the UK smart meter system is a good example.

 Algorithms to the rescue

Algorithms and mathematics are usually regarded by many organisations as ‘academic black magic’ and are generally overlooked as a solution for a robust IoT commercial application. Nevertheless, some of you may be surprised by how old the concept of algorithms actually are in solving real world problems.

A few weeks ago, I looked through my old PhD thesis and stumbled across a reference to one of world’s first documented algorithms from the 9th century mathematician, Al-Khwarizmi (where, the word ‘algorithm’ is derived from al-Khwarizmi’s name).

Al-Khwarizmi undertook pioneering work in algebra, which was popularized in his book, “al-Mukhtasar fi Hisab al-Jabr wa l-Muqabala” and altered society’s perspective of analyzing problems, be they a simple domestic chore or a complex mathematical concept.

 An excerpt from “Al-Mukhtasar fi Hisab al-Jabr wa l-Muqabala” for the solution to x^2 + 10x = 39.

Translation: For the squares and roots equal to a number, it is as saying: a square and ten of its roots is equal to thirty-nine dirhams. The solution is to halve roots, equal to five in this problem, then, multiplying the root by itself then this will be twenty-five. Then add it to thirty-nine and this will be sixty-four. Then take the square root, which will be eight and subtract from it half the root, which is five. The remainder is three and that is the root you are seeking and the square is nine.

I had forgotten (well, it was 14 years ago!) how elegant Al-Khwarizmi work actually was, and how I’m sure he would probably smile at the challenges that we’re facing today. Nevertheless, without his pioneering work, we wouldn’t have any of the IoT and security algorithms that we take for granted today.

Solutions in the 21st century

We’ve been pleasantly surprised by the rich offering from commercial IC vendors, such as: Atmel, NXP and Analog Devices in producing secure micro-controllers for the IoT market. Many of these micro-controllers include all of the necessary hardware encryption building blocks needed for building a secure IoT sensor, and some even offer a decent amount of processor power for data analytics algorithms.

Sounds ideal, right?

The Achilles heel of all of these solutions is how engineers implement them in a system. The micro-controller itself may be ‘secure’, but what about the system architecture (i.e. the algorithmic building blocks and and how they interact with each other). And what about encryption keys? How are they stored and updated? For the UK smart meter system mentioned above, the system just used one key for the whole system – not very secure ! It is this fact that is painfully overlooked by many, and as such, which eventually leads to the system being hacked and rendered useless.

In short, hardware based encryption technology is a great step in right direction for IoT device security, but without good understanding of encryption technology as part of the system architecture the solution is doomed to failure.

Author

  • Sanjeev is a RTEI (Real-Time Edge Intelligence) visionary and expert in signals and systems with a track record of successfully developing over 25 commercial products. He is a Distinguished Arm Ambassador and advises top international blue chip companies on their AIoT/RTEI solutions and strategies for I4.0, telemedicine, smart healthcare, smart grids and smart buildings.

    View all posts

It’s estimated that the global smart sensor market will have over 50 billion smart devices in 2020. At least 80% of these IoT/IIoT smart sensors (temperature, pressure, gas, image, motion, loadcells) will use Arm’s Cortex-M technology – where the largest growth is in smart Image sensors (ADAS) & smart Temperature sensors (HVAC).

IoT sensor measurement challenge

The challenge for most, is that many sensors used in these applications require a little bit of filtering in order to clean the measurement data in order to make it useful for analysis.

Let’s have a look at what sensor data really is…. All sensors produce measurement data. These measurement data contain two types of components:

  • Wanted components, i.e. information what we want to know
  • Unwanted components, measurement noise, 50/60Hz powerline interference, glitches etc – what we don’t want to know

Unwanted components degrade system performance and need to be removed.

So, how do we do it?

DSP means Digital Signal Processing and is a mathematical recipe (algorithm) that can be applied to IoT sensor measurement data in order to clean it and make it useful for analysis.

But that’s not all! DSP algorithms can also help in analysing data, producing more accurate results for decision making with ML (machine learning). They can also improve overall system performance with existing hardware (no need to redesign your hardware – a massive cost saving!), and can reduce the data sent off to the cloud by pre-analysing data and only sending what is necessary.

Nevertheless, DSP has been considered by most to be a black art, limited only to those with a strong academic mathematical background. However, for many IoT/IIoT applications, DSP has been become a must in order to remain competitive and obtain high performance with relatively low cost hardware.

Do you have an example?

Consider the following application for gas sensor measurement (see the figure below). The requirement is to determine the amplitude of the sinusoid in order to get an estimate of gas concentration (bigger amplitude, more gas concentration etc). Analysing the figure, it is seen that the sinusoid is corrupted with measurement noise (shown in blue), and any estimate based on the blue signal will have a high degree of uncertainty about it – which is not very useful if getting an accurate reading of gas concentration!

Algorithms clean the sensor data

After ‘cleaning’ the sinusoid (red line) with a DSP filtering algorithm, we obtain a much more accurate and usable signal which helps us in estimating the amplitude/gas concentration. Notice how easy it is to determine the amplitude of red line.

This is only a snippet of what is possible with DSP algorithms for IoT/IIoT applications, but it should give you a good idea as to the possibilities of DSP.

How do I use this in my IoT application?

As mentioned at the beginning of this article, 80% of IoT smart sensor devices are deployed on Arm’s Cortex-M technology. The Arm Cortex-M4 is a very popular choice with hundreds of silicon vendors, as it offers DSP functionality traditionally found in more expensive DSPs. Arm and its partners provide developers with easy to use tooling and a free software framework (CMSIS-DSP) in order to get you up and running within minutes.

Author

  • Sanjeev is a RTEI (Real-Time Edge Intelligence) visionary and expert in signals and systems with a track record of successfully developing over 25 commercial products. He is a Distinguished Arm Ambassador and advises top international blue chip companies on their AIoT/RTEI solutions and strategies for I4.0, telemedicine, smart healthcare, smart grids and smart buildings.

    View all posts

With the advent of smart cities, and society’s obsession of ‘being connected’, data networks have been overloaded with thousands of IoT sensors sending their data to the cloud, needing massive and very expensive computing resources to crunch the data.

Is it really a problem?

The collection of all these smaller IoT data streams (from smart sensors), has ironically resulted in a big data challenge for IT infrastructures in the cloud which need to process

massive datasets – as such there is no more room for scalability. The situation is further complicated with the fact, that a majority of sensor data is coming from remote locations, which also presents a massive security risk.

It’s estimated that the global smart sensor market will have over 50 billion smart devices in 2020. At least 80% of these IoT/IIoT smart sensors (temperature, pressure, gas, image, motion, loadcells) will use Arm’s Cortex-M technology, but have little or no smart data reduction or security implemented.

The current state of play

The modern IoT eco system problem is three-fold:

  • Endpoint security
  • Data reduction
  • Data quality

Namely, how do we reduce our data that we send to the cloud, ensure that the data is genuine and how do ensure that our Endpoint (i.e. the IoT sensor) hasn’t been hacked?

The cloud is not infallible!

Traditionally, many system designers have thrown the problem over to the cloud. Data is sent from IoT sensors via a data network (Wifi, Bluetooth, LoRa etc) and is then encrypted in the cloud. Extra services in the cloud then perform data analysis in order to extract useful data.

So, what’s the problem then?

This model doesn’t take into account invalid sensor data. A simple example of this, could be glue failing on a temperature sensor, such that it’s not bonded to the motor or casing that it’s monitoring. The sensor will still give out temperature data, but it’s not valid for the application.

As for data reduction – the current model is ok for a few sensors, but when the network grows (as is the case with smart cities), the solution becomes untenable, as the cloud is overloaded with data that it needs to process.

No endpoint security, i.e. the sensor could be hacked, and the hacker could send fake data to the cloud, which will then be encrypted and passed onto the ML (machine learning) algorithm as genuine data.

What’s the solution?

Algorithms, algorithms….. and in built security blocks.

Over the last few years, hundreds of silicon vendors have been placing security IP blocks into their silicon together with a high performance Arm Cortex-M4 core. These so called enhanced micro-controllers offer designers a low cost and efficient solution for IoT systems for the foreseeable future.

A lot can be achieved by pre-filtering sensor data, checking it and only sending what is neccessary to the cloud. However, as with so many things, knowledge of security and algorithms are paramount for success.